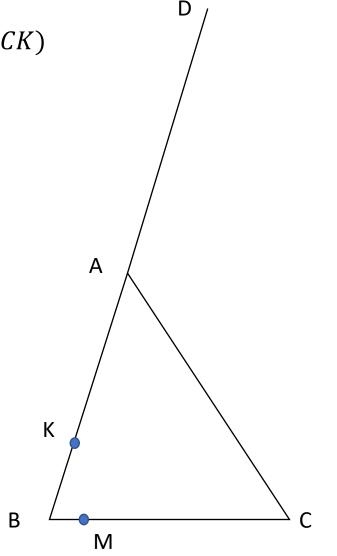
Problem Solving 3

Lecture 14 Apr 11, 2021

• Q1. Let A be a set of natural numbers so that the sum of every 3 numbers in A is a prime. What is the maximum possible size of such a set?


• Q2. Find all the solutions of the equation

$$(x+1)^2 = x^y + 1$$

• Q3. Let ABC be a triangle with $\angle A = 45^{\circ}$. Suppose D is a point on the continuation of the line segment BA such BD = BA + AC. Also, suppose K and M are points on AB and BC such that

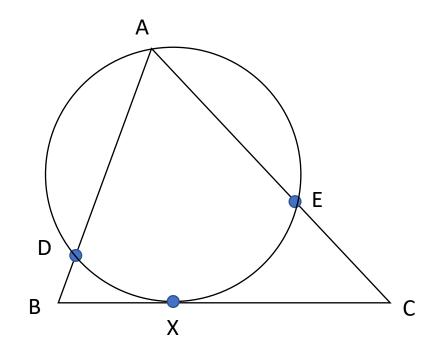
area(BDM) = area(BCK)

Find the angle $\angle BKM$

• Q4. Find all the solutions of the equation

$$n! + 3 = 3^{n-1}$$

• Q5. We have 5 white and 10 black coins. In how many ways we can arrange them in a line so that after each white coin there is at least one black coin.


• Q6. For any selection of initial real numbers $a_1, a_2, ..., a_n$ we play the following game: in each turn, we choose two of them, say x and y, and replace them with x + y + xy.

Therefore, after n-1 steps only one number, say A, is left.

Which of the following conclusions about A is correct:

- □ There is a choice of initial numbers $a_1, a_2, ..., a_n$ for which there are n! possible outcomes for A
- □ No matter how we play, A will always be the same
- □ If one of the numbers is even, A will certainly be even
- \Box There are finitely many choices of a_1, a_2, \dots, a_n for which A will be 1
- □ The statements above are all wrong!

- Q7. Suppose the triangle ABC has acute angles. Let D and E be points on AB and AC such that the circumcircle of the triangles ADE is tangent to BC at the point X. If we choose D and E so that the distance DE is minimum, then which of the following statements is correct:
- $\hfill\square$ X is the midpoint of BC
- □ AX is perpendicular to BC
- □ AX is the angle bisector of A
- 🗋 None

• Q8.

- We have 2021 lamps L_1, \ldots, L_{2021} that are all off at the beginning.
- We also have 2021 switches P_1, \dots, P_{2021} .
- Pressing the switch P_k will turn On/Off all the lamps L_n where n is a multiple of k. (For example, L_2 will turn On/Off all even numbered lamps).
- If we press all of P_1, \ldots, P_{2021} once in order, at the end, how many lamps will be ON?